|
Viral vectors are tools commonly used by molecular biologists to deliver genetic material into cells. This process can be performed inside a living organism (''in vivo'') or in cell culture (''in vitro''). Viruses have evolved specialized molecular mechanisms to efficiently transport their genomes inside the cells they infect. Delivery of genes by a virus is termed transduction and the infected cells are described as transduced. Molecular biologists first harnessed this machinery in the 1970s. Paul Berg used a modified SV40 virus containing DNA from the bacteriophage lambda to infect monkey kidney cells maintained in culture. ==Key properties of a viral vector== Viral vectors are tailored to their specific applications but generally share a few key properties. *''Safety'': Although viral vectors are occasionally created from pathogenic viruses, they are modified in such a way as to minimize the risk of handling them. This usually involves the deletion of a part of the viral genome critical for viral replication. Such a virus can efficiently infect cells but, once the infection has taken place, requires a helper virus to provide the missing proteins for production of new virions. *''Low toxicity'': The viral vector should have a minimal effect on the physiology of the cell it infects. *''Stability'': Some viruses are genetically unstable and can rapidly rearrange their genomes. This is detrimental to predictability and reproducibility of the work conducted using a viral vector and is avoided in their design. *''Cell type specificity'': Most viral vectors are engineered to infect as wide a range of cell types as possible. However, sometimes the opposite is preferred. The viral receptor can be modified to target the virus to a specific kind of cell. Viruses modified in this manner are said to be pseudotyped. *''Identification'': Viral vectors are often given certain genes that help identify which cells took up the viral genes. These genes are called Markers. A common marker is antibiotic resistance to a certain antibiotic. The cells can then be isolated easily as those that have not taken up the viral vector genes do not have antibiotic resistance and so cannot grow in a culture with antibiotics present. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Viral vector」の詳細全文を読む スポンサード リンク
|